Friday, August 19, 2022

Biological Age may be in the DNA's "Epigenetic Clock"

 


In biological research, a clock for aging has been sought for a long time. Chronological age refers to the actual amount of time a person has been alive. Chronological age is the number of years a person has been alive. In contrast, biological age refers to relative aging, or life expectation, based on lifestyle factors and the predisposition to certain diseases.

In the nineteen eighties, researchers thought that telomeres might be the cell's clock's mechanism because telomeres, DNA-protein complexes at the ends of chromosomes, shorten each time a cell divides. Furthermore, the correlation of telomere length with age and mortality was thought to be related to age; when telomeres become critically short, cells die. However, scientists learned that telomere length does not track age.

The anti-aging researcher Steve Horvath has developed computational clocks that can estimate the biological ages of organisms and tissues from methylation patterns in their DNA. He found that biological age refers to epigenetic alteration and DNA methylation, which express a person's ability and functioning and whether she has diseases related to old age. Epigenetic modification alters the expression of the gene rather than the genetic code itself. It changes the chemical tags called methyl groups that hang on DNA and help control gene activity. 

The epigenetic age can differ from the biological age. Researchers discovered that when the epigenetic clock estimated that someone's age was greater than their chronological age, they faced a higher risk of disease and death. When the clock showed that someone was younger, their risk went down. Even though the epigenetic clock was derived from chronological age data, its algorithm predicted mortality better than age did. The methylation clocks may be the most accurate monitors of biological age today. 

Image by Edgar Romero 



The Science of Consciousness Post, your news about the mind
The Science of Consciousness, please join the discussion
Website: evadeli



Copyright © 2022 by Eva Deli


No comments:

Post a Comment